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Abstract: We study the supersymmetric particle spectra and LHC collider observables

for the large-volume string models with a fundamental scale of 1011 GeV that arise in

moduli-fixed string compactifications with branes and fluxes. The presence of magnetic

fluxes on the brane world volume, required for chirality, perturb the soft terms away from

those previously computed in the dilute-flux limit. We use the difference in high-scale gauge

couplings to estimate the magnitude of this perturbation and study the potential effects

of the magnetic fluxes by generating many random spectra with the soft terms perturbed

around the dilute flux limit. Even with a 40% variation in the high-scale soft terms the low-

energy spectra take a clear and predictive form. The resulting spectra are broadly similar to

those arising on the SPS1a slope, but more degenerate. In their minimal version the models

predict the ratios of gaugino masses to be M1 : M2 : M3 = (1.5−2) : 2 : 6, different to both

mSUGRA and mirage mediation. Among the scalars, the squarks tend to be lighter and

the sleptons heavier than for comparable mSUGRA models. We generate 10fb−1 of sample

LHC data for the random spectra in order to study the range of collider phenomenology that

can occur. We perform a detailed mass reconstruction on one example large-volume string

model spectrum. 100fb−1 of integrated luminosity is sufficient to discriminate the model

from mSUGRA and aspects of the sparticle spectrum can be accurately reconstructed.
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1. Introduction

The imminent advent of the Large Hadron Collider (LHC) is an excellent motivation to

develop techniques to relate high energy string compactifications to observable low-energy

collider physics. The LHC will be an unprecedented probe of the terascale and of the physics

that stabilises the electroweak hierarchy. If supersymmetry is discovered at the LHC, it

will be necessary to connect the collider observables and the spectrum of superparticles to

a more fundamental theory such as string theory.

Supersymmetric phenomenology is the study not of supersymmetry but of supersym-

metry breaking: the undetermined parameters of the minimal supersymmetric standard

model (MSSM) are those associated with the soft supersymmetry breaking terms, such
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as gaugino masses, scalar masses or trilinear A-terms. There are over one hundred such

parameters in a general phenomenological parameterisation of the MSSM. The many differ-

ent possibilities for supersymmetric phenomenology are determined by the many different

possibilities for the soft terms. However, high scale constructions such as string compact-

ifications contain far fewer independent parameters and so could be expected to lead to

distinctive patterns of soft terms.

Broken supersymmetry is a property of the vacuum of the theory. The study of super-

symmetry breaking vacua in string theory therefore requires control over both the moduli

potential and the quantum corrections that enter into it. The quantum corrections play

a crucial role for the large-volume models [1, 2] that we study here. The first construc-

tions of IIB string models with all moduli stabilised [3] involved unbroken supersymmetry,

which had to be broken by hand by the addition of D3-branes, with a gravitino mass

that could only be lowered below the Planck scale by fine-tuning. It was subsequently

realised that with the inclusion of quantum corrections [4] the moduli potential can ad-

mit non-supersymmetric minima [5] and even naturally generate a hierarchically small

supersymmetry-breaking scale [1, 2]. This is the large volume scenario that we will explore

here.1

Nonetheless, it is still a long way from the mere existence of low-scale supersymmetry

breaking to actual phenomenology, and turning any given string compactification into LHC

collider observables requires many steps. We will assume gravity-mediated supersymme-

try breaking as the most directly motivated scenario from string compactifications; the

modifications for other proposals are straightforward.

1. The first requirement is that the compactification moduli be stabilised within a con-

trolled approximation. This is necessary to ensure that the compactification is a good

vacuum solution of string theory.

2. The second requirement is that supersymmetry is broken in the vacuum, so that

soft terms can be generated. We also require the supersymmetry breaking to be

hierarchically small, in order that the soft terms appear at the TeV scale rather than

near the Planck scale.

3. The third requirement is a visible sector containing the Standard Model gauge group,

with an understanding of the non-renormalisable couplings between the visible sector

and the hidden sector moduli that break supersymmetry.

4. The fourth task is to combine these couplings with the hidden sector supersymmetry

breaking to compute the visible sector soft supersymmetry breaking terms at the

high-energy compactification scale. Here we also would like an understanding of why

the soft terms generated do not lead to large CP violation or flavour-changing neutral

currents.

1The possibility of generating low-scale supersymmetry breaking from the moduli-stabilising potential

has also been studied in corners of string theory different from that of IIB with fluxes [6].
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5. The fifth task is to run these soft terms down to the TeV-scale, in order to compute

the physical sparticle spectrum.

6. The sixth task is to put such a spectrum through event generators such as [8, 7] and

detector simulators such as [9] in order to generate collider observables.

7. Finally, we also want an estimate of the uncertainties arising from the above six steps.

The aim of this paper is to carry out this program almost in its entirety for a specific

and well-motivated class of string compactifications, the large volume models developed in

ref. [1].2 These models arise within IIB flux compactifications with moduli stabilisation and

are characterised by broken supersymmetry with an exponentially large compactification

volume. This allows the natural generation of hierarchies between mass scales, an extremely

desirable feature. The large volume V lowers both the string scale ms and the gravitino

mass m3/2 with respect to the Planck scale MP ,

ms ∼
MP√
V

, m3/2 ∼ MP

V . (1.1)

V refers to a dimensionless quantity: the volume measured in powers of the string-length

ls. The dimensionful volume of the compactification manifold is Vl6s . From (1.1), an

intermediate string scale ms ∼ 1011 GeV gives rise to TeV-scale supersymmetry breaking.

The phenomenological implications of these models have been studied in [1, 2, 10 – 12]

where requirements 1-5 above have been addressed. In this article we will first review the

most relevant results from those references and complete requirements 6 and 7 above in

order to make direct contact with potential observables at the LHC.

The organisation of this paper is as follows. In section 2 we review the large-volume

models and the moduli stabilisation that generates the exponentially large volume. We also

describe the computation of soft terms and explain why leading order flavour universality is

assured, summarising the results of refs. [1, 2, 13, 12]. We also describe how magnetic fluxes

perturb the soft terms away from those computed in the dilute-flux limit. We estimate

the magnitude of the flux perturbation from the non-universality of the high-scale gauge

couplings. Such corrections will generate an uncertainty in the high-scale soft terms that

will translate into an uncertainty in the low-energy spectra and observables. In section 3

we examine the low-energy spectra arising from the soft terms considered in section 2.3,

by generating random soft terms perturbed about the dilute-flux limit. We describe the

generic properties of the resulting low-energy spectra and compare with those arising in

mSUGRA or mirage mediation models. In section 4 we study collider observables for these

spectra. We use counting observables to scan the properties of the randomly generated

spectra, and show that for a sample spectrum sparticle masses can be reconstructed. In

section 5 we present our conclusions.

We have made an effort to make this article self-contained. A phenomenologically

minded reader may wish to skip the formal details of section 2 and start in section 2.3.

2The omission is in the lack of an explicit magnetised brane configuration realising the MSSM gauge

group; this we simply assume can be achieved.
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2. Large-volume models

Large-volume models represent a class of string compactifications, with all moduli sta-

bilised, in which quantum corrections to the scalar potential naturally lead to an exponen-

tially large volume. They were first found in references [1, 2]. They are robust against

additional quantum corrections, such as those of [14, 15]. A recent detailed study of this

robustness is [16]. They have been applied to obtain string theory inflation [17], natural

QCD axions [18], the scale for neutrino masses [19] and to low energy supersymmetric phe-

nomenology [10 – 13] in which they provide a natural hierarchy for supersymmetry breaking

with the large volume leading to an intermediate string scale. A comprehensive review

is [20]. We start by reviewing their construction and properties.

2.1 Construction

These models arise as a rather generic limit of flux compactifications of IIB string theory

in the presence of D3 and D7 branes. In N = 1 supersymmetric IIB compactifications

the Kähler potential and superpotential for the moduli Φ = S,Ua, Ti take the standard

form [3, 21, 4, 22],

K̂(Φ, Φ̄) = −2 ln

(

V +
ξ̂

2g
3/2
s

)

− ln

(

i

∫

Ω ∧ Ω̄

)

− ln(S + S̄), (2.1)

Ŵ (Φ) =

∫

G3 ∧ Ω +
∑

i

Aie
−aiTi , (2.2)

where the dependence on the complex structure moduli U is encoded in the Calabi-Yau

(3, 0) form Ω. G3 corresponds to the three-form fluxes and is linear in the dilaton S.

We have included the leading α′ correction to the Kähler potential, which depends on

ξ̂ = −ζ(3)χ(M)/(2π)3 with χ(M) the Euler number of the Calabi-Yau manifold M . Large-

volume models require M to have at least two Kähler moduli Ti, one of which is a blow-up

mode, as well as a negative Euler number, i.e. χ(M) < 0. The simplest model is that

of P
4
[1,1,1,6,9], which we use as our working example. For this the volume can be written

as [1, 23]

V =
1

9
√

2

(

τ
3/2
b − τ3/2

s

)

. (2.3)

τb = Re(Tb) and τs = Re(Ts) denote big and small cycles. The geometry is analogous to

that of a Swiss cheese: the cycle Tb controls the volume (‘the size of the cheese’) and Ts

controls a blow-up cycle (‘the size of the hole’).

The N = 1 moduli scalar potential is

V = eK̂
(

K̂ij̄DiWDj̄W̄ − 3|W |2
)

, (2.4)

where DiW = ∂iW + (∂iK̂)W . Dropping terms sub-leading in V, this potential becomes

V =
∑

Φ=S,U

K̂ΦΦ̄DΦWD̄Φ̄W̄

V2
+

λ(asAs)
2√τse

−2asτs

V − µW0asAsτse
−asτs

V2
+

νξ|W0|2

g
3/2
s V3

(2.5)
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Figure 1: The physical picture: Standard Model matter is supported on a small blow-up cycle

located within the bulk of a very large Calabi-Yau. The volume of the Calabi-Yau sets the gravitino

mass and is responsible for the weak/Planck hierarchy.

in the limit V ≫ 1, where λ, µ, ν are numerical constants. The first terms of (2.5) stabilise

the dilaton and complex structure moduli at DSW = DUW = 0. The remaining terms

stabilise the Kähler moduli. The non-perturbative terms in τs balance against the pertur-

bative corrections in the volume, and it can be shown that at the minimum of the scalar

potential [1]

V ∼ W0e
c

gs , τs ∼ lnV,

where W0 is the value of the flux superpotential at the minimum of S and U fields, and

c ∼ ξ2/3 is a numerical constant. The resulting volume is exponentially large with a small

blow-up cycle. This geometry is shown in figure 1. The minimum avoids two problems of the

KKLT scenario. First, as its consistency does not require a fine-tuning of W0, its existence

is more generic. Secondly, the stabilisation of the T moduli can never destabilise the U

moduli, as near the minimum the relevant terms in (2.5) come with different powers of the

volume. A phenomenological advantage is that this minimum also breaks supersymmetry

– 5 –
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and generates an exponentially large volume.3

This large volume allows the generation of hierarchies by lowering both the string scale

and gravitino mass as in (1.1). A volume V ∼ 1015 is required to explain the weak/Planck

hierarchy and give TeV-scale supersymmetry breaking. We assume such a volume through-

out this paper. Further attractive features are that the volume V ∼ 1015 also gives an axion

decay constant fa ∼ 1011 GeV in the allowed window [18] and the required neutrino sup-

pression scale of 1014 GeV [19].

A fully realistic model must have a Standard Model sector, which requires an ap-

propriate configuration of O-planes and magnetised D7-branes. Chirality arises from the

topological intersection numbers of differently magnetised branes.4 To avoid having gauge

groups that are too weakly coupled, we must wrap the Standard Model D7 branes on the

small cycle corresponding to τs. As the branes should wrap a blow-up cycle, the brane

configuration will represent a local construction of the Standard Model. We assume such a

configuration can be found, but do not attempt to realise the brane configuration explicitly.

The techniques involved in explicitly constructing such a configuration will be similar to

those used in models of branes at singularities. In this context there has been recent effort

at constructing MSSM-like gauge groups - see [26 – 28] for progress.

As ms ≫ m3/2, the infrared physics of these models is that of the MSSM. The com-

putation of the soft terms is then central to the study of the low energy phenomenology.

2.2 Gauge couplings

The gauge kinetic functions fa(Φ) are principally determined by the cycles wrapped by the

D7 branes. If Ti is the Kähler modulus corresponding to a particular 4-cycle, reduction of

the DBI action for an unmagnetised brane wrapped on that cycle gives5

fi =
Ti

4π
. (2.6)

To generate chirality we require the branes to be magnetised. The magnetic fluxes al-

ter (2.6) to

fi =
Ti

4π
+ hi(F )S, (2.7)

where hi is a topological function of the fluxes present on the brane. This can be understood

microscopically. The gauge coupling 1/g2 = Ref is given by an integral over the cycle Σ

wrapped by the brane,
1

g2
=

∫

Σ
d4y e−φ

√

g + (2πα′)F . (2.8)

3The minimum of the potential (2.5) is at negative vacuum energy |V0| ∼ m3
3/2MP with supersymmetry

broken. Just as in KKLT a lifting term is desirable to obtain de Sitter or Minkowski space. There are

several possible sources for this lifting term [24] (see [25] for a recent detailed analysis for KKLT and large

volume models). Since the anti de Sitter minimum is already non supersymmetric, in contrast to KKLT

models, the contribution of this lifting term to the soft breaking terms is suppressed and does not play an

important role in the rest of this paper.
4Magnetic flux on D7 branes is equivalent to dissolved D5 branes. The chirality arises from the point

like intersection of the dissolved D5 branes.
5This holds with the phenomenology conventions Tr(T aT b) = 1

2
δab; with conventions Tr(T aT b) = δab

the gauge kinetic function is f = T
2π

.
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Thus in the presence of flux, the gauge coupling depends on the magnetic flux as well as the

cycle volume.6 The factors hi(F ) have been explicitly computed for toroidal orientifolds [29,

30].

As a minimal scenario we assume that the Standard Model branes live on a single

blow-up cycle and so the gauge kinetic functions depend upon only one Kähler modulus

Ts. As the cycle size T is increased, the magnetic fluxes are diluted and their contribution

to the gauge couplings goes away. It is useful to consider this dilute flux limit in addition

to the physical case, and to see the latter as a perturbation on the former. The Standard

Model gauge kinetic functions will be

1. Dilute flux limit

fSU(3) =
Ts

4π
,

fSU(2) =
Ts

4π
,

fU(1)Y
= kY

Ts

4π
. (2.9)

2. Physical case

fSU(3) =
Ts

4π
+ hSU(3)(F )S, (2.10)

fSU(2) =
Ts

4π
+ hSU(2)(F )S, (2.11)

fU(1)Y
= kY

(

Ts

4π
+ hU(1)(F )S

)

. (2.12)

The factor kY accounts for the uncertainty in normalising the U(1) gauge field: the

U(1) = U(n)/SU(n) that appears in intersecting brane models in general has a different

normalisation to that of U(1)Y . The ‘canonical’ value kY = 5/3 only holds for SU(5)

grand unified models; in general, kY is model dependent. Typically in D-brane models

hypercharge is an anomaly free linear combination of different U(1)’s coming from different

U(n) factors, the particular linear combination determining the value of the normalisation

factor kY . The functions h(F ) depend on the microscopic configuration of branes and

fluxes, and we also regard these as unknown.

2.3 Soft breaking terms

A four dimensional N = 1 supergravity Lagrangian is specified at two space-time deriva-

tives by the Kähler potential K, superpotential W and gauge kinetic function fa. The

computation of soft terms starts by expanding these as a power series in the matter fields,

W = Ŵ (Φ) + µ(Φ)H1H2 +
1

6
Yαβγ(Φ)CαCβCγ + · · · , (2.13)

K = K̂(Φ, Φ̄) + K̃αβ̄(Φ, Φ̄)CαC β̄ +
[

Z(Φ, Φ̄)H1H2 + h.c.
]

+ · · · , (2.14)

fa = fa(Φ). (2.15)

6In computing explicit expressions for the factors hi(F ), it is easiest to use the Chern-Simons action to

get the correction to Im(f), and then use holomorphy for the correction to Re(T ).
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Here Φ denotes a generic modulus field and Cα a generic matter field. In the MSSM the

µ and Z terms apply only to the Higgs fields and so for these we have written H1 and

H2 explicitly. Gravity-mediated supersymmetry breaking is then quantified through the

moduli F-terms, given by

Fm = eK̂/2K̂mn̄Dn̄
¯̂
W. (2.16)

The relationships of the expansions (2.13) to (2.15) to the soft supersymmetry breaking

terms are given in full detail in ref. [31].

2.3.1 Gaugino masses

The canonically normalised gaugino masses are given by

Ma =
1

2

Fm∂mfa

Refa
. (2.17)

The gaugino masses that follow from (2.7) are

1. Dilute flux limit

M1 = M2 = M3 =
F s

2τs
≡ M. (2.18)

2. Physical case

M1 =
F s

2(τs + 4πh1(F )Re(S))
,

M2 =
F s

2(τs + 4πh2(F )Re(S))
,

M3 =
F s

2(τs + 4πh3(F )Re(S))
, (2.19)

where we write Mi for MSU(i), and similarly for ha and fa.

In the limit of large cycle volume, the flux becomes dilute and the gaugino masses

become universal at the compactification scale where the soft parameters are computed.

In the physical case, the gaugino masses are non-universal due to the flux contribution.

However for non-abelian gauge groups - i.e. for the wino and gluino - it follows from (2.10)

and (2.11) that the fractional non-universality of gaugino masses is identical to that of the

gauge couplings:

M3

M2

∣

∣

∣

∣

∣

ms

=
g2
3

g2
2

∣

∣

∣

∣

∣

ms

. (2.20)

Due to the factor kY in the U(1) gauge couplings, this relation does not hold for M1. Here

we have

M3

M1

∣

∣

∣

∣

∣

ms

=
g2
3

kY g2
1

∣

∣

∣

∣

∣

ms

, (2.21)

where kY is the unknown normalisation factor.
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2.3.2 Scalar soft terms

For the case of diagonal matter field metrics, K̃αβ̄ = K̃αδαβ̄ (no summation over α), the

scalar masses, A-terms and B-term are given by [31]

m2
α = (m2

3/2 + V0) − F m̄Fn∂m̄∂n log K̃α. (2.22)

Aαβγ = Fm
[

K̂m + ∂m log Yαβγ − ∂m log(K̃αK̃βK̃γ)
]

. (2.23)

Bµ̂ = (K̃H1K̃H2)
− 1

2

{

eK̂/2µ
(

Fm
[

K̂m + ∂m log µ − ∂m log(K̃H1K̃H2)
]

− m3/2

)

+
(

2m2
3/2 + V0

)

Z − m3/2F̄
m̄∂m̄Z + m3/2F

m
[

∂mZ − Z∂m log(K̃H1K̃H2)
]

−

F̄ m̄Fn
[

∂m∂nZ − (∂m̄Z)∂n log(K̃H1K̃H2)
]

}

. (2.24)

As mentioned above, the tree-level vacuum energy V0 (in Planck units) is much smaller

than m2
3/2 (V0/M

2
P . m3

3/2/MP ≪ m2
3/2) and thus the effects of uplifting can be neglected.

To compute the scalar masses and A-terms, the key piece of information required is the

modular dependence of the kinetic terms K̃α. In the dilute flux limit this can be derived by

relating the modular scaling of K̃α to that of the physical Yukawa couplings Ŷαβγ through

the relation

Ŷαβγ =
eK̂/2Yαβγ

(K̃αK̃βK̃γ)
1
2

, (2.25)

and the fact that the T moduli cannot appear perturbatively in Yαβγ due to the combination

of holomorphy and the Peccei-Quinn (PQ) shift symmetry. ref. [13] used this reasoning to

derive

K̃α ∼ τ
1/3
s

V2/3
kα(φ), (2.26)

where φ refers to the complex structure moduli. In the dilute flux limit this leads to scalar

masses and A-terms given by

mα =
1√
3

F s

2τs
=

M√
3
,

Aαβγ = −F s

2τs
= −M. (2.27)

B = −4M

3
. (2.28)

The superpotential µ-term can be shown to vanish due to scaling arguments [13]: in

the limit that V → ∞, any non-zero superpotential µ-term would generate a mass for

the Higgs field above the string scale. A non fine-tuned (i.e. weak-scale) µ term can be

generated through the Giudice-Masiero mechanism [32], and as such is guaranteed to be

of a similar order to the other soft terms. In fact it turns out to be difficult to satisfy the

B-term constraint (2.28) when running to low energies. However, the Higgs sector is by far

the least understood sector of the Standard Model. As such it may be non-minimal, or the

– 9 –
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B-term may receive an extra contribution through the vacuum expectation value of a gauge-

invariant scalar, α〈N〉H1H2. In this paper we therefore follow normal phenomenological

practice by trading B for tan β and treating tan β as a free parameter.

However, in addition to modifying the gauge couplings, the magnetic fluxes will also

modify the kinetic terms and their dependence on τs. This affects soft breaking terms

except in the limit of large cycle volume and dilute fluxes, where flux dependence should

disappear. While there do not exist explicit formulae for Calabi-Yau compactifications, for

compactifications on toroidal orientifolds such behaviour has been analysed using string

scattering techniques. A typical result is (see [29] and section 4.4 of [33])

KCC̄ = (S + S̄)−α
3

∏

j=1

(T j + T̄ j)β+γ φj

π (U j + Ū j)−
φj

π

√

Γ(φj/π)

Γ(1 − φj/π)
, (2.29)

where Uj , S are the complex structure moduli and dilaton fields respectively, α, β, γ are

constants and φj = arctan
(

fj

tj2

)

is the relative angle between the branes, with f j a flux

quantum number. We can see that the T -dependence involves the angles φi. However,

in the limit that T → ∞, φi → 0 and the flux-dependence disappears. We also see that

fields with different φi, corresponding to different gauge charges, experience a different T-

dependence. While toroidal examples are not the case of direct interest, they are important

because they do allow an explicit computation of flux effects and one can explicitly see how

the effects of fluxes become less important at large cycle volume.

The large-volume models rely on a Calabi-Yau geometry and there do not exist any

direct formulae for the effects of magnetic fluxes on the matter metrics. Nonetheless,

the fluxes will affect the soft terms and must be taken into account. To model the flux

corrections, we shall use the simple ansatz

K̃α =
(τs + ǫα(F ))1/3

V2/3
. (2.30)

ǫα is used to parametrise the flux effects, and in the dilute flux limit ǫα ≪ τs. While the

form of (2.30) is simpler than will actually occur, it satisfies the basic requirement that the

flux contribution will vanish in the limit that the cycle size goes to infinity and the fluxes

dilute away. Using (2.30) we can then compute

mα =
1√
3

F s

2(τs + ǫα(F ))
,

Aαβγ = − 1√
3

(mα + mβ + mγ) . (2.31)

In the limit that ǫα → 0, this recovers the dilute-flux expressions (2.27).

2.4 Flavour and CP issues

The formulae (2.22) to (2.24) used above in computing the soft terms are a restricted form

applicable for flavour-diagonal soft masses. This requires some explanation, as ‘generic’

gravity-mediated models give flavour non-universal soft terms and corresponding problems
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with flavour-changing neutral currents. The problem with this ‘generic’ expectation is that

it is essentially a naive argument using only effective field theory, which does not take

into account the actual structures that arise in string compactifications, which violate the

genericity assumptions.

It was argued in [12] that for the large-volume models, and more generally for models

arising from IIB flux compactifications, there is a clean understanding of why supersym-

metry breaking should give universal soft terms, at least at leading order. We briefly

summarise the argument. The ability to distinguish flavours and consider flavour mixing

comes from the structure of the Yukawa couplings. The Yukawa couplings are generated

from the superpotential, and as such can only depend on the dilaton and complex structure

moduli. The combination of holomorphy and the PQ shift symmetry Im(T ) → Im(T ) + ǫ

implies that the Kähler moduli cannot make any perturbative appearance in the super-

potential: since flavour is generated in the superpotential, the interactions of the T -fields

are flavour-blind. The physical Yukawa couplings also depend on the Kähler metric; the

scaling arguments entering (2.26) however guarantee that different flavours have the same

scaling with the T -moduli.

However, in IIB flux models it is the T -fields that have non-vanishing F-terms and

break supersymmetry. The Kähler potential (2.1) also has a block-diagonal structure,

KΦΦ̄ =







KSS̄ 0 0

0 KUŪ 0

0 0 KT T̄






+ O

(

1

V

)

. (2.32)

Mixing between the T and S,U -fields is volume-suppressed and tiny. Thus the fields that

break supersymmetry - the Kähler moduli - and the fields that give flavour - the S and

U fields - are decoupled, to leading order, and supersymmetry breaking generates flavour

universal soft terms.

Large CP-violating phases are likewise not a problem. From the structure of the soft

terms (2.17), (2.22) and (2.23), we see that the gaugino and A-term phases are all inherited

from the small modulus F-term F s. They are thus universal and do not generate large CP

violating phases that would be in conflict with observations.

3. Spectra

3.1 Generation

The low-energy mass spectrum is determined by evolving the soft terms from the high scale

to the TeV scale. Ambiguities in the high-scale soft terms will translate into ambiguities

in the physical spectrum and observables. In ref. [12], a basic phenomenological analysis

was carried out using the soft terms in the dilute-flux limit, (2.18) and (2.27), which were

run down to produce TeV mass spectra. However, as emphasised above, the contribution

of magnetic fluxes automatically introduces a theoretical uncertainty in the high-scale soft

parameters. We want to understand how this uncertainty manifests itself in the possible

low energy spectra.
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We make the assumption that the cycles are sufficiently large that the effect of the fluxes

is treated as a perturbation on the dilute-flux results. In general the fluxes are unknown,

but in one instance they can be taken ‘from data’. In the dilute-flux limit, from (2.9) the

non-abelian gauge couplings would be exactly universal at the high scale ms ∼ 1011 GeV.

From (2.10) and (2.11), it follows that the fluxes are directly responsible for the difference

of SU(2) and SU(3) gauge couplings. The magnitude of the flux perturbation can then be

estimated from this ratio.

Assuming an MSSM spectrum with no exotic matter, the ratio of high-scale gauge

couplings is

g2
3

g2
2

∣

∣

∣

∣

∣

1011GeV

≈ 1.37. (3.1)

We regard both g2
3 and g2

2 as fluctuations around a common value. In determining the soft

terms that we run down to generate low energy spectra, we use the following strategy. We

first specify a high scale value for the gluino mass, M3. The relations (2.20) and (3.1) then

fix the high-scale wino mass,

M2

∣

∣

∣

ms=1011 GeV
≈ 1

1.37
M3

∣

∣

∣

ms=1011 GeV
. (3.2)

The gaugino masses are flux-induced perturbations about a base value F s

2τs
. We use the

central value of M2 and M3 to estimate this,

Fs

2τs
≈ Mc =

M2 + M3

2
. (3.3)

We generate the remaining soft masses as fluctuations about Mc. For example,

M1 = Mc(1 ± ǫ1),

ma =
Mc√

3
(1 ± ǫa). (3.4)

Here ma stands for the soft breaking mass for scalars. The perturbation parameter ǫa

differs for each type of field, but is assumed to be the same across generations.7

With the ansatz (2.30), the A-terms are given in terms of the scalar masses by (2.31).

Aαβγ = − 1√
3
(mα + mβ + mγ). (3.5)

We first generate a set of high-scale soft terms according to the relations (3.4). For

each spectrum, the ǫa were randomly generated within a domain 0 < ǫa < ǫ0 with constant

probability density. We initially take ǫ0 = 0.2, but also investigate the choice ǫ0 = 0.4.

In generating spectra, as stated above we do not impose the high-scale value for the B-

term (2.28) and instead treat tan β as a free parameter, which we allow to lie in the region

7This is required from considerations of flavour physics. The theoretical justification for this is that the

flux magnitudes are dual to brane intersection angles θi, and fields of different flavour but with the same

gauge charges see the same angles θi. It would be useful to further examine this question within explicit

models.
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5 < tan β < 40. We repeatedly generate many random spectra in this manner. We then

remove any spectra which fail experimental constraints, even though all points pass direct

sparticle search limits due to the heavy SUSY breaking scale set.

Using the program SOFTSUSY2.0 [34] the 2-loop renormalisation group equations

(RGEs) for the MSSM are solved numerically to obtain a particle spectrum at the weak

scale. The values of the Standard Model input parameters used for our computations

are mt = 171.4 GeV [35], mb(mb)
MS = 4.25 GeV, αs(MZ)MS = 0.1187, α−1(MZ)MS =

127.918, MZ = 91.1187 GeV [36]. Every particle spectrum generated must be regarded

as equally consistent with the large-volume scenario we study. In determining what

counts as an acceptable spectrum, we impose experimental constraints on the magnitude

of BR(b → sγ), the anomalous magnetic moment of the muon (g − 2)µ and the dark

matter relic density Ωh2. We require spectra to generate values for these within 2σ of the

experimental results.

The average measurement of the b → sγ branching ratio was obtained from [37]:

BR(b → sγ) = (3.55± 0.26)× 10−4 . For an estimate of the theoretical uncertainty we used

the result of [38] 0.30×10−4; adding the two errors in quadrature, we obtain the 1σ bound,

BR(b → sγ) = (3.55 ± 0.40) × 10−4.

The anomalous muon magnetic moment aµ = (gµ − 2)/2 represents the largest the-

ory/experiment discrepancy in precision electroweak physics. The average experimental

value of aµ is 116592080(63) × 10−11 [39], with an error that is statistics dominated. The

dominant uncertainties in the Standard Model computation of aµ arise from hadronic light-

by-light scattering and vacuum polarisation diagrams - for recent reviews see [41, 40]. The

evaluation of the vacuum polarisation diagrams is carried out using experimental data from

e+e− → hadrons. The Standard Model result given in [40] is athe
µ = 116591785(61)×10−11 ,

giving a 3.2 σ discrepancy

δaµ = (287 ± 91) × 10−11.

It is important to note that δaµ usually has the same sign as µ, so a supersymmetric

explanation of the gµ − 2 discrepancy prefers µ > 0.

We also impose bounds on the Higgs mass obtained by the LEP2 collaborations [42].

The lower bound is 114.4 GeV at the 95% CL. The theoretical computation of the Higgs

mass in supersymmetric scenarios is subject to an estimated error of 3 GeV, and so we

impose mh > 111 GeV on the result obtained from SOFTSUSY.

The 2σ WMAP [43] constraint on the relic density of dark matter particles is

0.085 < Ωh2 < 0.125. (3.6)

Assuming a thermal relic abundance, we compute the neutralino contribution to dark

matter using micrOmegas1.3 [44]. The lower bound in (3.6) is only applicable if we require

that the dark matter is solely composed of neutralinos. Since there may be other dark

matter constituents, such as axions or for the large volume models the volume modulus,8

when considering spectra we only impose the upper bound on Ωh2.

8The volume modulus is light and has the potential to overclose the universe. Its abundance must

therefore be diluted. We refer interested readers to [45] for a detailed discussion on this issue, as well as

other astrophysical and cosmological implications.
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In determining the collider phenomenology the most important feature of any SUSY

spectrum is the overall scale, in particular the scale of the squarks and gluinos whose pair

production initiates the majority of supersymmetric events at a hadron collider. This has

a large but mostly trivial effect on the observables, primarily through an overall rescaling

of the number and energy scale of SUSY events: the lighter the spectrum, the more events

that are generated. In studying the different spectra produced by the large-volume models,

and how the high-scale flux uncertainty translates into a low-scale spectrum uncertainty,

our interest is not so much in the overall scale of the spectrum as in its structure. We

therefore take a fixed value M3 = 500 GeV at the high scale, which corresponds to a

physical gluino mass mg̃ ∼ 900 GeV. Assuming supersymmetry is discovered at the LHC,

the overall production scale could be constrained by a variable such as Meff [46]. In section

4 we will consider the effects of varying the overall scale.

3.2 Features

The particle masses of 200 spectra passing the 2σ experimental constraints and randomly

generated with M3 = 500 GeV at ms = 1011 GeV and 20% variation parameters ǫα, are

plotted in figure 2.9 From figure 2 we can see the extent to which uncertainties at the

high scale translate into uncertainties at the low scale. It should be noted that because the

fluctuations are assumed to be the same for each generation, but to vary independently for

each type of field, there are correlations among fields of different generations.

All of these spectra satisfy the above observational constraints. The tan β parameter

was allowed to be in the range 5 < tan β < 40, but all of the points that pass the constraints

have tan β < 23. The generic features of the spectra are

1. The first-generation squarks are heavy, with masses around 800GeV. The mq̃1 : mg̃

mass ratio is well-predicted, with a range from 780:900 to 810:900. The lighter stop

(particle 12 in the figure) is at around 600 GeV, while the sbottom (particle 17) has

a 720 GeV mass.

2. The sleptons are much lighter at around 300 GeV. The fluctuations in the ml̃ : mg̃

ratio are much larger than for the squark and inherit their magnitude from the high-

scale fluctuations. The stau is the lightest slepton, but is comparable in mass to the

ẽ and µ̃.

3. The chargino χ̃±
1 has mχ̃±1

= 304 ± 5 GeV and exhibit very little fluctuation. It is

nearly degenerate with the second neutralino χ̃0
2, which tends to be mostly wino.

4. The LSP tends to be mostly bino, with a mass that can fluctuate substantially be-

tween 200GeV and 300GeV. If the LSP has a mass towards the top end of this range

it can have a substantial wino component.

9The dilute flux spectrum shown is chosen to give a similar sparticle production scale compared to

the other spectra shown in the figure. Another useful comparison would be a dilute flux spectrum with

M3 ≈ 430 GeV, which corresponds to the base value Mc used for generation of the large volume models.

This spectrum is not expected to lie at the centre of the large volume model spectra because of the different

gaugino masses defined at the string scale, which in turn implies different RG evolution.
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Figure 2: Particle spectra with the gluino mass normalised to ∼ 900 GeV and 20% high scale

uncertainties in other parameters. For comparative purposes, an SPS1a spectrum with the same

value of the gluino mass is also shown using black dots. The hollow circles show a spectrum coming

from soft terms in the dilute flux limit. Particles 1-6 are the left and right handed sleptons, particles

7-18 are the squarks, 19 is the lightest supersymmetric particle (LSP) χ̃0

1
, 20-22 are the remaining

χ̃0

i , 23-26 the Higgs particles, 27 the gluino, 28-30 the sneutrinos, 31 and 32 are the charginos χ̃±

1,2.

5. The charged Higgs fields are intermediate between the squarks and sleptons, with

masses around 500 GeV.

The choice of 20% for the variation parameter ǫ0 is somewhat arbitrary. We have also

generated spectra in which the variations were only constrained to be within 40% of the

central value Mc. These spectra are shown in figure 3.10

The spectra with 40% variation in high-scale parameters exhibits the same basic struc-

ture as that with 20% variation, except that the spread is greater. The variation in squark

masses remains much less than that for weakly interacting sparticles.

The features of the spectrum described above can be explained analytically. The

simplest example is for the ratios of gaugino masses. The one-loop RGEs for the gauge

couplings and gaugino masses are

dga

dt
=

g3
a

16π2
ba, (3.7)

dMa

dt
=

2g2
a

16π2
baMa. (3.8)

10See footnote 9 for comments on the dilute flux spectrum.
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Figure 3: Particle spectra with the gluino mass normalised to ∼ 900 GeV and 40% high scale

uncertainties in other parameters. For comparative purposes, an SPS1a spectrum with the same

value of the gluino mass is also shown using black dots. The hollow circles show a spectrum coming

from soft terms in the dilute flux limit. Particles 1-6 are the left and right handed sleptons, particles

7-18 are the squarks, 19 is the LSP χ̃0

1
, 20-22 are the remaining χ̃0

i , 23-26 the Higgs particles, 27

the gluino, 28-30 the sneutrinos, 31 and 32 the charginos χ̃±

1,2.

It follows from (3.7) and (3.8) that at one-loop

d

dt

(

Ma

g2
a

)

= 0, (3.9)

and so
M3

M2

∣

∣

∣

∣

∣

MZ

=
g2
3

g2
2

∣

∣

∣

∣

∣

MZ

×
(

M3g
2
2

M2g2
3

)

∣

∣

∣

∣

∣

MX

=
g2
3

g2
2

∣

∣

∣

∣

∣

MZ

, (3.10)

where we have used the high-scale gaugino mass expressions (2.19). For the bino mass, we

have
M2

M1

∣

∣

∣

∣

∣

MZ

=
g2
2

g2
1

∣

∣

∣

∣

∣

MZ

×
(

M2g
2
1

M1g2
2

)

∣

∣

∣

∣

∣

MX

=
g2
2

kY g2
1

∣

∣

∣

∣

∣

MZ

. (3.11)

The bino mass cannot then be taken directly from data as it depends on the factor kY

which enters the U(1) normalisation. The fluctuations in the bino mass at the weak scale

are inherited from its high-scale fluctuations and are large. The bino tends to be heavier

than in mSUGRA models. This can be understood from the leading order universality of

the gaugino masses at the intermediate scale, which holds up to the effects of magnetic
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fluxes and tends to compress the gaugino mass spectrum.11 It may be possible to achieve

an M1 : M2 ratio comparable to that of mSUGRA, but as seen in figure 3 it would be non-

generic and difficult to achieve while still treating the magnetic fluxes as perturbations.

To explain the structure of scalar masses and the magnitude of their fluctuations, we

can use the approximate analytic solution for the soft parameters obtained by one-loop

RGE running to the low scale [47]:

m2
d̃L

∣

∣

∣

Q
= m2

d̃L

∣

∣

∣

Q0

+ K3 + K2 +
1

36
K1 + ∆d̃L

,

m2
ũL

∣

∣

∣

Q
= m2

ũL

∣

∣

∣

Q0

+ K3 + K2 +
1

36
K1 + ∆ũL

,

m2
ũR

∣

∣

∣

Q
= m2

ũR

∣

∣

∣

Q0

+ K3 +
4

9
K1 + ∆ũR

,

m2
d̃R

∣

∣

∣

Q
= m2

d̃R

∣

∣

∣

Q0

+ K3 +
1

9
K1 + ∆d̃R

,

m2
ẽL

∣

∣

∣

Q
= m2

ẽL

∣

∣

∣

Q0

+ K2 +
1

4
K1 + ∆ẽL

,

m2
ẽR

∣

∣

∣

Q
= m2

ẽR

∣

∣

∣

Q0

+ K1 + ∆ẽR
. (3.12)

Here Ki is determined by the RGE running of the gaugino mass Mi, and is given by

Ka(Q) =











3/5

3/4

4/3











× 1

2π2

∫ ln Q0

lnQ
dt g2

a(t)|Ma(t)|2(a = 1, 2, 3)

=











6/33

3/2

−8/9











(

M2
a

∣

∣

∣

Q0

− M2
a

∣

∣

∣

Q

)

, (3.13)

where Q0 is the high scale and Q is the scale at which the squark and slepton masses are

evaluated. The ∆ contributions come from the D-terms and are expected to be small,

being proportional to m2
Z .

For the large-volume models we numerically obtain K3 ≈ 1.92M2
3 (MX) with

M3(MX) = 500 GeV, MX = 1011 GeV. For comparison, an mSUGRA point on the SPS1a

slope has K3 ≈ 3.84M2
3 (MX) with M3(MX) = 500 GeV, MX ∼ 1016 GeV.

The effect of (3.12) and (3.13) is that as we run to low energies the gluino mass comes to

give the dominant contribution to the squark masses. This is due to the large contribution of

the K3 factor in equations (3.12). For small mq̃(MX), mq̃(MSUSY) is mainly determined by

the gluino mass and is relatively insensitive to the initial value of mq̃(MX). Here MSUSY is

the scale of the SUSY breaking spectrum, ∼ O(1) TeV. This explains why the fluctuations

in mq̃(MSUSY) are small, since the gluino mass is fixed at tree-level by M3 = 500 GeV.

The slepton evolution is however driven only by the wino and bino, corresponding to the

weakly coupled SU(2) and U(1) gauge groups. RGE effects from the winos and binos are

11A similar compression is observed in mirage mediation models, where the gaugino masses are exactly

universal at the intermediate scale.
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less pronounced than those of the gluino, and thus ml̃(MX) gives the dominant contribution

to ml̃(MSUSY). The physical slepton masses inherit the high-scale fluctuations of ml̃(MX)

and this produces the large slepton mass fluctuations observed in figures 2 and 3.

For the spectra of figures 2 and 3, the stau is lighter than the other sleptons, but the

stau-slepton mass splitting is not as pronounced as mSUGRA models with the same tan β.

This is because there is less room for the stau to evolve when running from the intermediate

scale rather than the GUT scale, and because the larger value of M1 tends to compensate

for the effect of the large Yukawa coupling in the stau RGEs.

It is promising that even allowing for large 40% variations in the high-scale soft terms

does not alter the overall structure of the low-energy spectrum. We now describe how the

spectra of figure 2 and 3 can be distinguished from mSUGRA or mirage mediation models.

3.3 Discrimination from mSUGRA models

The spectra that appear in figures 2 and 3 have properties of ‘typical’ gravity-mediated

scenarios and are broadly similar to those arising from mSUGRA models. However, there

are several important differences which enable these to be discriminated.

The most obvious is the gaugino mass ratio. In mSUGRA the ratios of all three gaugino

masses are set by the gauge couplings, with low-scale values

(M3 : M2 : M1)
∣

∣

∣

MZ

=
(

g2
3 : g2

2 : g2
1

)

∣

∣

∣

MZ

∼ 6 : 2 : 1. (3.14)

Here g2
1 = 5

3g2
Y with the GUT normalisation of U(1)Y . This ratio follows from gaugino

mass universality at the GUT scale. From the spectrum of figure 2, we see that for the

large-volume models we have

(M3 : M2 : M1)
∣

∣

∣

MZ

=
(

g2
3 : g2

2 : kY g2
Y

)

∣

∣

∣

MZ

∼ 6 : 2 : (1.5 → 2). (3.15)

(3.15) thus gives both a distinct prediction for the mg̃ : mW̃ mass ratio together with the

expectancy that the mW̃ : mB̃ ratio will differ from that in mSUGRA. We can understand

the larger value of the bino mass relative to mSUGRA from the fact that gaugino masses

are approximately universal at the intermediate scale, up to the effects of magnetic fluxes.

To achieve the mSUGRA gaugino mass ratios in the large volume models requires a very

large fluctuation in the high-scale bino mass away from the value expected in the dilute-

flux approximation. This is non-generic and difficult to achieve while still regarding the

magnetic fluxes as perturbations. An observation of the gaugino mass ratios (3.14) would

thus disfavour the large-volume scenario.

The use of gaugino mass ratios as observables has one distinct advantage, recently

emphasised in ref. [48]. The matter content enters both the gaugino and gauge coupling

RGEs in the same way (through ba) and so the one-loop derivation of the ratios (3.14)

and (3.15) is independent of any extra charged matter that may be present beyond the

MSSM. String constructions generically contain extra vector-like matter that will affect

the running of the gauge couplings. The point is that such matter will equally affect the

running of the gaugino masses and gauge couplings, and so the low-energy ratios (3.14)
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and (3.15) will be unaltered. In this respect these represent predictions that do not rely on

the details of the matter spectrum. Another advantage of the gaugino mass ratios (3.15)

is that the derivation of these soft terms shows that these ratios persist even beyond the

dilute flux approximation, indeed up to the point where non-perturbative string corrections

in e−Ts would become important in evaluating the gauge kinetic functions.

There is a caveat to be added concerning the above relationship of gaugino

masses (3.15). Two factors enter into the determination of the ratio M1 : M2. The first is

requiring that the high-scale perturbations remain in the dilute-flux regime. As an extreme

example, within the 20% and 40 % variations above it is never possible to get M1 : M2 as

1 : 10; such a result requires high-scale soft terms that violate the dilute-flux assumption.

The second factor is that in determining the spectra that count as allowed in figures 2

and 3 above, the upper bound on the WMAP relic density constraint (Ωh2 < 0.11) has

been imposed. As the bino mass enters crucially into the evaluation of the relic density,

this imposes a further selection cut on allowed values for the M1 : M2 ratio, in conjunction

with the slepton masses.

The first constraint (remaining with the dilute flux assumption) prefers an M1 : M2

ratio larger than found in mSUGRA, i.e. greater than 1 : 2. The second constraint strength-

ens this preference. For example in the 40% diagram, the spectra with the lowest values

of M1 are also seen to have low values for the slepton masses (this allows e.g stau coan-

nihilation to reduce the relic density to the WMAP allowed region). This requires a large

downward flux-induced perturbation of the slepton masses in correlation with that of the

bino mass, which is disfavoured.

The spectra shown in figures 2 and 3, and the resulting gaugino mass ratio of (3.15),

are a convolution of the above two effects. Actually, it is expected that this discussion

will need further modification. The reason is that the use of the thermal relic abundance

computation relies on the assumption that cosmology is thermal from a temperature of T ∼
O(10GeV) down. Such reheating temperatures are in general hard to achieve within string-

derived theories due to the cosmological moduli problem. In the large-volume models,

there exists a light gravitationally coupled O(MeV) volume modulus. Such a field has a

lifescale longer than the universe and must be diluted for it not to spoil nucleosynthesis.12

Some dilution mechanism, such as thermal inflation, is therefore necessary to dilute the

modulus. The presence of such a dilution mechanism alters the late-time cosmology. The

proper computation of the relic abundance should start with the reheating temperature that

applies after the dilution mechanism has been in operation. The dilution mechanism may

itself lead to misalignment of the light modulus and thus require a reheating temperature

much less than O(10)GeV.

The upshot of this discussion is that to avoid the moduli problem the reheating tem-

perature may end up being significantly less than assumed in the thermal computation

of the relic abundance, and this will tend to modify the spectra and gaugino mass ratios

above. A lower reheating temperature will imply the need for more efficient particle anni-

hilation. In general this will tend to prefer greater degeneracies in the sparticle spectrum

12The cosmological properties of the large volume models are discussed at more length in [45].
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(e.g. to allow efficient coannihilation channels), but the detailed effects of a lower reheating

temperature are beyond the scope of this paper.

We note the spectra (3.14) and (3.15) could potentially be distinguished within the

first year of LHC running; for example a di-lepton edge measurement mχ̃0
2
−mχ̃0

1
= 50 GeV

together with an estimated SUSY production scale of mSUSY ∼ 1000±300 GeV is consistent

with the second gaugino spectrum and not with the first.

A more subtle distinction can be made through the relative values of the scalar masses.

For example, the evolution of the first-generation squarks is largely driven by the gluino

and the RGEs for these squarks exhibit focusing behaviour. If we neglect all but the strong

dynamics, we have a solution of the one-loop RGEs [49]

m2
q̃(µ)

M2
3 (µ)

=
8

9
(1 − r2) + r2

m2
q̃(MX)

M2
3 (MX)

where r =
g2
3(MX)

g2
3(µ)

. (3.16)

As the renormalisation scale µ is lowered, an infra-red stable fixed point of r → 0 is

approached, i.e.

(

m2
q̃

M2
3

)

→ 8
9 . However, how close one gets to this infra-red fixed point

limit for µ = MSUSY depends upon the starting scale of evolution: for MX ∼ 1016 GeV

(i.e. for the mSUGRA case), r = 0.34, whereas for the large volume models, MX ∼ 1011

GeV, r = 0.45. Equation (3.16) shows that it is generally hard to obtain mq̃ ≪ mg̃; if

we start with mq̃ ∼ mg̃ then this remains the case, and even if initially mq̃ ≪ mg̃ then

the squark will rapidly run up to obtain a mass mq̃ ∼ mg̃. The point is that by starting

the evolution at the intermediate scale, there is simply less time for the mq̃ : mg̃ ratio to

evolve compared to starting at the GUT scale. If the squark masses start below the gluino

mass, as holds in our case, they have less time to evolve and so tend to be lighter than

for an evolution commencing at MGUT: the focusing behaviour of equations (3.16) is less

efficient. The ratio

(

M2
3

m2
q̃

)

for an intermediate scale model will then always be less than

for a corresponding GUT-scale model with the same soft terms.

This is manifest in our spectrum. We obtain a ratio mq̃1 : Mg̃ ∼ 800 : 900, and which

can be significantly smaller (down to mq̃1 : Mg̃ ∼ 770 : 900 with the 40% variation). A

similar choice of high-scale soft terms in mSUGRA gives mq̃1 : Mg̃ ∼ 850 : 900, illustrating

the greater running of the squark masses starting from the GUT scale. In the mSUGRA

framework, lighter scalar masses at the GUT scale will reduce the mq̃1 : Mg̃ ratio at the low

scale. However the lighter scalar masses also give rise to lighter sleptons. This can be seen

by examining the SPS1a spectrum in figures 2 and 3. While the squark masses are now

relatively close to those occurring for the large volume models, at mq̃1 : Mg̃ ∼ 830 : 900,

the sleptons are significantly lighter. It is thus not possible to fit the scalar spectrum of

figures 2 and 3 with mSUGRA models unless the assumption of universal scalar mass at

the GUT scale is relaxed: with mSUGRA either the squarks are heavier or the sleptons

lighter than for the large volume models.

This illustrates a general feature of the large-volume spectrum, which is that it is more

compressed than those appearing in mSUGRA. This follows primarily from the fact that

the soft term running starts at the intermediate scale rather than the GUT scale. The
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masses therefore have less time to separate compared to mSUGRA models, and thus the

spectrum is more bunched.

Clearly, the precise mq̃ : mg̃ and ml̃ : mg̃ ratios are not quantities that can be rapidly

measured at the LHC and would require years of high-luminosity running. However, while

difficult to measure, these ratios are very interesting because they offer the possibility of

estimating the scale at which the soft terms have been defined, and thus even the possibility

of indirectly measuring the string scale.

3.4 Discrimination from mirage mediation models

A scenario that has recently attracted attention is mirage mediation [50 – 52] - see [53 –

56] for recent work. This corresponds to soft terms arising from supersymmetric KKLT

stabilisation, with supersymmetry broken by an anti-D3 brane. The gravitino mass is

determined by the fluxes and is naturally at the Planck scale. The hierarchy is generated

by fine-tuning the fluxes to reduce the gravitino mass to a TeV. The soft terms arise from

a combination of gravity and anomaly mediation. The soft terms are defined at the GUT

scale and exhibit mirage unification at an intermediate scale,

Mmirage =

(

m3/2

MP

)α/2

MP , (3.17)

where α is the ratio of gravity to anomaly mediation and is usually taken to be O(1) (see

however the discussion in section 5 of [12]). In terms of this parameter the gaugino mass

ratios are given by [48]

(M3 : M2 : M1)
∣

∣

∣

MZ

= (6 − 1.8α) : (2 + 0.2α) : (1 + 0.66α). (3.18)

The mW̃ : mB̃ mass ratio can be similar to that arising from the large-volume models,

and thus it will not be possible to distinguish mirage mediation and large volume models

from the mW̃ : mB̃ mass ratio. However the mg̃ : mW̃ ratio is substantially smaller for

mirage mediation than for the large volume models, and thus here discrimination is possible.

For example, assuming α ∼ 1, a wino mass of 300 GeV would correspond in the mirage

scenario to mg̃ ∼ 570 GeV and in the large volume scenario to mg̃ ∼ 900 GeV. While

the gluino mass might be difficult to measure directly, in both models the gluino mass is

correlated with the squark masses, which are easier to measure. Thus by measuring the

mχ̃0
2
−mχ̃0

1
and mq̃L

−mχ̃0
1
mass differences it will be possible to distinguish these two models.

For example, suppose mχ̃0
2
−mχ̃0

1
was measured as 75 GeV, together with mχ̃0

1
& 200 GeV.

Then a measurement of mq̃L
− mχ̃0

1
∼ 250 GeV would prefer mirage mediation models to

large-volume models and a measurement mq̃L
−mχ̃0

1
∼ 550 GeV would prefer large-volume

models to those of mirage mediation.

Compared to mirage mediation, the large volume models have a less bunched spectrum.

This can be understood by the nature of the soft term universality that arises at the

intermediate scale. In the large volume models, this is approximate and is broken by the

magnetic fluxes on the brane world volumes. The effect of this flux-breaking is to raise

the gluino mass in relation to the wino mass: as the gluino mass runs up, this broadens
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the low-energy spectrum. In mirage mediation models the gaugino masses exhibit exact

universality at the intermediate scale, and so at low energies the mg̃ : mW̃ ratio remains

smaller than for the large-volume models.

It thus should be possible to use the gaugino masses to distinguish the soft terms

produced by the large-volume models from those appearing in either mSUGRA or mirage

mediation scenarios. Distinction from mSUGRA is possible through the mW̃ : mB̃ ratio

but not through the mg̃ : mW̃ ratio; distinction from mirage mediation is possible through

the mg̃ : mW̃ ratio but not through the mW̃ : mB̃ ratio. In both cases further distinction

should be possible through the spectrum of scalar masses. However it should be remarked

that the mirage mediation scenario is also based on IIB string compactifications and the

presence of magnetic fluxes may also affect the structure of soft terms in that scenario.

4. Collider observables

In this section we investigate the collider phenomenology that follows from the spectra

given in section 3. We analyse this through Monte Carlo simulation of 10fb−1 of LHC data

for each spectrum. For one given model we simulate 100fb−1 of LHC data and show how

well the spectrum can be successfully reconstructed.

4.1 Collider model and data generation

To generate events we used PYTHIA version 6.400 [8] linked to the PGS (Pretty Good

Simulation) detector simulator [9]. We take the SOFTSUSY2.0 spectrum and link it to

PYTHIA with the SUSY Les Houches Accord [57]. For each particle spectrum generated

we have simulated 10 fb−1 of data for pp collisions at 14 TeV. We also simulated the tt̄

and WW/ZZ/WZ Standard Model backgrounds. We did not simulate the W/Z + jets

background due to the large amount of CPU time required. Data was originally generated

in the LHC Olympics [58] format. This contains the particle energies and momenta for all

particles (electrons, muons, hadronic taus, jets and photons) in an event, and b-tagging

information for jets. The data analysis was performed using ROOT [59].

The SUSY production cross sections for a given spectrum can be computed using

Prospino 2.0 [60] at next-to-leading order in QCD. With a gluino scale mg̃ ∼ 900 GeV and

the spectra of figure 2 and 3, the dominant production cross-sections are σg̃g̃ ∼ 0.53− 0.54

pb, σq̃g̃ ∼ 2.9 − 3.0 pb and σq̃q̃ ∼ 1.4 − 1.5 pb. Squark-gluino production is therefore most

significant, followed by squark-squark and then gluino-gluino production.

Using PYTHIA and PGS, we simulated 10 fb−1 of mock LHC data for each of the

spectra that were generated in section 3. The basic cuts used were the PGS Level 2 trig-

gers, which are summarised in the appendix. As all of these models have a similar SUSY

production scale and cross-section, differences in the number of events passing the cuts

must be attributed to the detailed structure of the spectrum rather than to the overall

scale. To compare and contrast many different models, all with the same high-energy ori-

gin and with the same overall scale, we first use counting observables. These will probably

not be very useful for discovery of physics beyond the Standard Model, being too sensi-

tive to experimental systematics and physics unknowns such as parton densities and parton
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shower/matrix element approximations. Nevertheless, we may imagine a time in the future

when these effects have been measured to some precision at the LHC after a beyond the

Standard Model discovery, and counting observables might be used for model discrimina-

tion. Their importance here is that they provide a simple and easily visualisable measure

of the differences in the possible phenomenology across a wide range of models. Although

not our emphasis in this study, the observables used are mostly chosen to be those in [61].13

While the cuts employed here are somewhat different to those used in ref. [61], a rough

comparison between their results and ours may be useful. We also investigate the effect of

increasing the high scale parameter fluctuations as well as varying the overall scale of the

soft terms.

In section 4.3 we discuss the potential to reconstruct the spectra from kinematic ob-

servables. We will find that this is much easier for some spectra than for others.

4.2 Counting observables

A counting observable is simply the number of events in a sample which all satisfy a certain

set of desired properties. Since the expected number of events N with properties P has a

statistical uncertainty
√

N , the signal is taken to be observable only if it is well above a

large statistical fluctuation of the background. Therefore for observability we require

Ns√
Nb

> 4,
Ns

Nb
> 0.1, Ns > 5, (4.1)

where Ns is the number of events in the signal data sample satisfying property P and Nb

is the number of events in the background sample satisfying the same property. Our esti-

mation of Nb could easily be wrong by factors of a few due to theoretical and experimental

uncertainties, but we shall see that thankfully most observables will still be usable.

The basic cuts for the counting observables are the L2 triggers used in the LHC

Olympics version of PGS. On top of that we impose additional cuts:

1. For all jets entering the counting, we require jet PT > 100 GeV.

2. For all isolated e, µ, we require PT > 10 GeV.

3. For all τs we require PT > 100 GeV.

4. Missing transverse momentum 6pT > 300 GeV.

The choice of 6pT cut can be motivated by the plot in figure 4, produced for one of the

randomly generated spectra. It can be seen that for 6pT > 340 GeV, the signal dominates

over the background. This value does not depend significantly on the choice of the random

spectrum.

13The results given for the large-volume models in [61] differ from those here as the soft terms used are

different: in [12] it was shown that a cancellation exists in the scalar soft terms that significantly reduced

the scalar soft terms by a factor ln(MP /m3/2) compared to the original estimate of [11] that was used

in [61]. The Kähler potential was calculated for Calabi-Yau manifolds to first order in a volume expansion

only recently [13]. The cancellation occurs only for chiral fields.
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Figure 4: 6pT plot for background and a sample signal spectrum. The background is shown in red.

The spike in the background 6pT at 200GeV is an artifact of the triggers used.

The simplest signatures to consider are inclusive counts of opposite sign di-lepton

and tri-lepton events (including taus). These are also among the most promising for SUSY

searches since the detector tagging efficiency for leptons (electrons and muons in particular)

is quite high. Furthermore, there is relatively little Standard Model background for multi-

lepton multi-jet high-6pT events.

The presence of many opposite sign di-leptons is also an indicator of whether the decay

chain χ̃0
2 → l̃±l∓ → l+l−χ̃0

1 occurs frequently in the samples. This decay chain may be

used [62] for constructing an l+l− endpoint which can subsequently be used to constrain

sparticle masses. The results for spectra with mg̃ fixed at ∼ 900 GeV are shown in figure 5.

Even though the overall mass scale of the spectrum is fixed and the SUSY cross-section

is essentially unaltered between models, the number of observed di-lepton and tri-lepton

events still varies significantly. The dominant background comes from tt̄ events, and in a

large number of cases the number of such SUSY events lies above the acceptable number

of background events.

This variation can be understood in terms of the different possible spectra, The number

of di-lepton (and hence tri-lepton) events depends crucially on the details of the χ̃0
2 →

l̃±l∓ → l±l∓χ̃0
1 decay chain. In most cases the first 2 generations of left handed sleptons

are heavier than χ̃0
2. However the right handed sleptons may be lighter or heavier than

χ̃0
2. If they are all heavier, then the 3-body decays of the χ̃0

2 will dominate. The χ̃0
2 → χ̃0

1

decay will then often proceed through an off-shell slepton l̃∗, giving many di-lepton events.

However, if ẽR, µ̃R are heavier than χ̃0
2 but τ̃1 is lighter - which can occur as, for larger tan β,

mτ̃1 is driven down by the RGEs and tends to be light - the χ̃0
2 will predominantly decay

through the chain χ̃0
2 → τ̃∓τ± → χ̃0

1τ
∓τ±. Since the tau tagging efficiency is relatively
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low, and mτ̃ −mχ̃0
1

is relatively small (meaning that the taus tend to be soft), few taus will

be picked up by the detector. It may also happen that all of ẽR, µ̃R, τ̃R, ν̃ are lighter than

χ̃0
2, with the dominant branching ratio of χ̃0

2 again into τ̃s and ν̃s. In this case we again

observe only a few di-lepton or tri-lepton events.

In ref. [61], the number of clean di-
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Figure 5: Numbers of tri-leptons/OS di-leptons.

The black dot corresponds to the observable limit

according to (4.1).

and tri- leptons was used as an observ-

able, meaning no jet activity in the detec-

tor. From the point of view of our simula-

tion, this corresponds to direct weak gaug-

ino and/or slepton production. In 10 fb−1,

none of our model samples produced a

single “clean” event, consistent with the

masses of the sleptons/weak gauginos and

the fact that this is a weakly interacting

production channel. The usefulness of this

observable is questionable, since there will

always be some jet pollution in the detec-

tors due to the QCD background. Thus

some cut on hadronic activity must be given experimentally in order to define a jet veto,

and the predicted backgrounds can be notoriously unreliable.

Another observable considered in [61] that we will not use here concerns the number of

events with no leptons, 1 or 2 b-jets, and at least six hard jets. The difficulty in using this

observable comes in the estimation of the background. The processes in PYTHIA are 2 → 2

rather than 2 → many, and so the ‘hard jet’ background arising from PYTHIA comes from

the parton shower rather than from direct hard jet production. This may underestimate

the background by orders of magnitude. A correct estimate of this background would

require the inclusion of 2 → 4, 5, 6 processes in the Monte Carlo (e.g. with ALPGEN [63]).

In figure 6, we plot the number of di-lepton multi-jet events with 1 or 2 b-jets against

the number of di-lepton multi-jet events with 0 b-jets. There is a clear positive correlation

in figure 6, indicating that the number of events with two leptons and b-jets is dependent

more on the number of events with leptons passing the cuts than on the number of b-

jets. Nonetheless the number of events with b-jets can vary by a factor of 2 between

different spectra. This is reasonable, because there are numerous competing decays where

the branching ratios are dependent on various independent input parameters. We give one

example. If kinematically allowed, as here, the gluino has a significant branching ratio

to tt̃1, which generates events with multi-jets and bs. The branching ratios of t̃1 → tχ̃0
1,2

and bχ̃+
1 depend on tan β and At, since they affect the mixing of the stops. In figure 6

we also require two leptons. However the number of leptons observed depends on the

mass differences between the light neutralinos and the sleptons. The point is that these

parameters mentioned above are varied independently in our models, which explains why

spectra with similar numbers of leptons can have different numbers of b-jets. Other decay

chains, for example g̃ → b̄b̃, can be analysed in a similar fashion.
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Figure 7: Comparison of results with 20% and 40% variations: di- and tri-leptons counts and

events with b-jets.

The number of b-jets may poten-
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Figure 6: Number of events with 2 leptons, 1 or 2 b-

jets and 2 jets/Number of events with 2 leptons, 0 b-

jets and 2 jets. The black dot in both case represents

the observable limit according to (4.1).

tially be used as a coarse discriminator

between different high-scale construc-

tions. Suppose the scalars are much

heavier than the gluino, with a large

Higgsino component to the LSP. In this

situation, the gluino will primarily decay

through a 3 body channel to bb̄χ̃0
1,2 - as

well as other channels involving tops if

kinematically allowed - due to the large

higgsino coupling to stops and sbottoms.

These decays will all result in a large

number of b-jet events. An example of

such a construction is the focus point

region of mSUGRA. Since in our con-

struction the light neutralinos are al-

ways gaugino dominated, the number of b-jet events is expected to be smaller. We have

verified that a focus point spectrum does indeed give many more b-jet events than those

arising from the large-volume models. Thus, once b-jet tagging is understood, the number

of b-jets can potentially be used to distinguish different high-scale constructions with a

similar overall production scale.

Since the 20% random variation we chose for all parameters is an arbitrary choice, it

is useful to compare the results with a sample of spectra with 40% variations. The results

(again with M3 = 500 GeV at the high scale) are shown in figures 7-8. In figure 7 we see

the number of di- and tri-lepton events, as well as the number of di-lepton events with or

without b-jets. The general structure of the observables is similar to that seen above with

the 20% variations. However the 40% variation spectra, although with the same overall
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Figure 8: Number of events with 0 leptons, 1 or 2 b-jets and 2 jets vs. number of events with 2

leptons, 0 b-jets and 2 jets.

mass scale (as defined by the gluino mass) can have significantly more di-lepton events

than the 20% variation spectra. This is due to the fact that in the 40% case, the LSP is

more likely to acquire a significant wino component, in which case the large left-handed

couplings result in a lot of lepton production. Also it may happen that all the right handed

sleptons and left handed sleptons are lighter than χ̃0
2, and that the mass differences are all

large, which again results in many observed di-lepton events.

An interesting counting observable to consider is the number of events with one or two

b-jets, requiring 2 hard jets in the event. In figure 8 we compare the number of di-lepton

events without b-jets against the number of 0 lepton events with b-jets. This observable

is shown on the abscissa of figure 8, and it is consistent throughout the entire sample of

spectra. The observability limit defined by eq. (4.1) is at (209,49) and is omitted from the

figure.

4.2.1 Varying the sparticle mass scale

We next investigate the effect of varying the overall mass scale which has so far been set

by fixing the gluino mass. An arbitrary value for M3 is selected and 20% variations on the

parameter F s/(τs) allowed. The results are shown in figures 9-10, in conjunction with the

results for the SPS1a slope given by m0 = 0.4m1/2, A0 = −m0, sgnµ = +1, tan β = 10. In

the plots, 50 SPS1a points from M12 = 250 GeV to M12 = 887 GeV in steps of 13 GeV are

shown.

The main conclusion from the study of counting observables is that, even with the

spectra restricted to the form of figures 2 and 3, the total number of observed SUSY events

can vary widely. Even fixing the overall scale of the spectrum, the large-volume models

still lead to a widely varying number of triggered events: models at the same scale and

coming from the same high-scale theory can give quite different results as small changes in

high scale parameters can lead to significant changes in observables. We do not make an

explicit comparison of our results with the models discussed in [61] for this reason. If there

is so much variation within our models, there will be a larger variation with other models
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Figure 9: Comparison of event numbers with 20% variations and varying mass scale, and results

for the SPS1a slope: (a) numbers of tri-leptons/OS di-leptons, (b) number of events with 2 leptons,

1 or 2 b-jets and 2 jets/number of events with 2 leptons, 0 b-jets and 2 jets.

that would make them difficult to differentiate. We have also used different cuts, which

makes a quantitative comparison impossible. Nonetheless, a rough look at the similar plots

in both works does not indicate an easy way to separate these models from those in [61].

4.3 Potential for reconstruction
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Figure 10: Comparison of event numbers with 20%

variations and a varying mass scale. The results for

the SPS1a slope are included for comparison.

We now discuss the potential for recon-

structing the spectra of figure 2. This

will illustrate the above point: if there

are very few di-lepton events, and no

kinematic endpoints, then direct recon-

struction would be very difficult if not

impossible. The structure of the analysis

given here follows standard accounts of

reconstruction such as in ref. [62, 64], for

example.

The ability to reconstruct supersym-

metric particle masses depends signifi-

cantly on the spectrum and on the decay

chains and their branching ratios. Since jet observables usually suffer from large combina-

torial backgrounds, the cleanest measurements are those involving only leptons. Therefore

the first step in reconstruction of a supersymmetric spectrum is a measurement of a di-

lepton edge from the χ̃0
2 → χ̃0

1l
±l∓ chain. As explained in section 4.2, whether we observe

few or many di-lepton events from this decay chain is determined by the mass difference be-

tween χ̃0
1 and χ̃0

2 and the slepton branching ratios. Figure 11 shows the plot of the di-lepton

invariant mass Mll ≡ (pl1 + pl2)
µ(pl1 + pl2)µ for 10 fb−1 of data for two spectra, one with

many opposite sign, same flavour (OSSF) di-lepton events in the signal, and one with very
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Figure 11: Opposite sign, same flavour di-lepton invariant mass for (a) a spectrum with many

di-lepton events and mχ̃2
≫ mχ̃1

and (b) a spectrum with few di-lepton events and mχ̃0

2

− mχ̃0

1

≈
21GeV. In both cases we require 4 hard jets and 6pT ≥ 200GeV. Standard Model background is

shown in red.

mχ̃±1
mχ̃±2

mh0 mH0 mA0 mH±

303 480 114 532 532 538

mg̃ md̃L
mũL

mũR
mt̃1

mt̃2
mb̃1

mb̃2
md̃R

909 800 792 779 583 790 725 782 787

mẽL
mτ̃1 mν̃e mν̃τ mẽR

mτ̃2 mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

348 261 338 336 270 349 233 303 460 483

Table 1: Mass spectrum of model picked for reconstruction. All masses are listed in GeV. The

first two families are mass degenerate.

few. There is no evidence for an edge in the di-lepton invariant mass in figure 11b. If there

are few di-lepton events, the spectrum is much harder to reconstruct since one has to resort

to multi-jet observables. We therefore restrict to considering a spectrum which generates

many OSSF di-lepton events, such that the di-lepton edge can be easily reconstructed. For

this spectrum we simulated 100 fb−1 data and the plots given are based on this simulation.

This represents one year of LHC running at design luminosity. The spectrum we attempt

to reconstruct is as shown in table 1.

We start by selecting events that pass a set of cuts that we name selection A:

1. 6pT > 300 GeV

2. Two opposite sign electrons or muons with PT > 10 GeV.

3. At least four jets with PT1(2)(3)(4)
> 100(50)(50)(50) GeV.

4. 6pT > 0.2Meff , where Meff ≡ PT1 + PT2 + PT3 + PT4 + 6pT .
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Figure 12: Mll after cuts selection A. We expect an edge at ∼ 69GeV from the spectrum. The

Standard Model background is shown in red.

We then plot the histogram of the di-lepton invariant mass, with a flavour subtraction

of the e+µ− + e−µ+ result to cancel processes with leptons arising from two independent

decays.

This plot is shown in figure 12. It is well-known [62] that the χ̃0
2 → l̃±l∓ → χ̃0

1l
±l∓

decay chain admits an endpoint at

Mmax
ll =

√

√

√

√

(m2
χ̃0

2
− m2

l̃R
)(m2

l̃R
− m2

χ̃0
1
)

m2
l̃R

(4.2)

The location of this endpoint can be found by fitting figure 12 with a triangular edge,

smeared with a Gaussian (the width of which is also fitted) to simulate resolution effects

of the experiment. MINUIT [66] and MINOS are used for this purpose, and to estimate

the error on the measurement. We obtain Mmax
ll = 69.20 ± 0.15 GeV.

Following ref. [62], we next study the decay channel q̃L → qχ̃0
2 → l̃±l∓q → χ̃0

1l
±l∓q to

obtain a set of constraints on the squark masses as well as ẽR, χ̃0
1, χ̃

0
2. Events are selected

with the following properties (selection B):

1. At least 4 hard jets, with PT,1(2)(3)(4) > 100(50)(50)(50) GeV.

2. Two opposite sign electrons or muons with PT > 10 GeV.

3. Meff ≡ PT1 + PT2 + PT3 + PT4 + 6pT ≥ 400 GeV.

4. 6pT ≥ max(300, 0.2Meff ).
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Figure 13: Reconstructing the spectrum with a clear di-lepton edge: Mqll edge after cuts selection

B. An edge is expected at 467GeV. Standard Model background is shown in red.

The di-lepton 4-momentum is combined with each of the two hardest jets to obtain two

different qll invariant masses. The lighter of these is plotted in figure 13. Mmax
llq can be

written in terms of the maximum of several terms that contain sparticle masses and have a

form similar to eq. 4.2. In refs. [64, 62], rather simple expressions were given for edges such

as Mmax
llq . These were correct for the particular mass spectra examined in those papers, but

are not true in the general case. We therefore use the general expressions given in ref. [65]

and refer the reader there for further details. An empirical fit of the form

f(M) =

∫ Mmax
llq

0
dz(a1(M

max
llq −z)+a2(M

max
llq −z)2) exp

(

− 1

2σ2
(M − z)2

)

+b1+b2M, (4.3)

is used to reconstruct this endpoint with σ = 25 GeV. With a variable σ in the fit, often-

times MINOS did not converge indicating a possible degenerate χ2 minimum valley. With

a fixed width, we were able to obtain a perfectly good fit, as figure 13 shows. The endpoint

obtained through this fit is Mmax
llq = 450±5.5±2.4 GeV. Where we quote two uncertainties,

the first is a statistical one from the fitting procedure whereas the second is our guess at

an additional ‘fitting’ systematic uncertainty from seeing the effect of changing the bin-size

and fit interval. For events in which Mmax
ll > Mll > Mmax

ll /
√

2, the larger qll mass is

plotted in figure 14.14 This gives a threshold which has a theoretical locus in terms of

masses of all four sparticles involved in the chain [65]. The qll threshold is obtained by

14The flavour subtraction of the Standard Model background in figures 13 and 15 and can be seen to

slightly over subtract. This can be understood as an artifact of the triggers used, which have a small flavour

asymmetry.
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Figure 14: Reconstructing the spectrum with a clear di-lepton edge: heavier Mqll in 4-jet events

with 6pT and Mll > Mmax

ll /
√

2. A low-energy threshold is expected. Standard Model background is

shown in red.

fitting with the empirical form

[A(M − M low
llq ) + B(M − Mhigh

llq )]θ(M − Mhigh
llq ), (4.4)

and a Gaussian smearing. We obtain Mmin
qll = 188 ± 7.5 ± 6.6 GeV from the fit, which

figure 14 shows, reproducing the shape of binned simulated data up to statistical variations.

Events are then further selected such that one qll mass is less than and the other

greater than Mmax
qll ∼ 500 GeV. This identifies the jet involved in the decay chain q̃L →

qχ̃0
2 → l̃±l∓q → χ̃0

1l
+l−q. By combining each of the leptons with this jet, we can plot the ql

mass (figure 15) which constrains a function of the sparticle masses [65]. This endpoint is

located in a similar fashion to the di-lepton endpoint, using a Gaussian smeared triangular

fit. We obtained Mmax
lq = 353 ± 1.7 ± 3.6 GeV.

We summarise the values found through the above fitting procedure in table 2. They

differ from the expected values by ‘experimental’ systematic errors. The sources for these

systematic errors can be associated with hadronic calorimeter calibration, jet energy leakage

or the cone or cluster algorithms that reconstruct the jets. For our purposes we assume that

these systematic errors can be removed as part of the experimental analysis. Following [64],

for our estimation of sparticle masses we shift the measured endpoints to the theoretical

values, thus eliminating this experimental systematic bias, but keep the errors arising from

the fitting procedure. We add the statistical and ‘fitting’ systematic errors in quadrature

in order to quote a total uncertainty on the central theoretical value.

We now use these shifted endpoints to reconstruct the χ̃0
1, q̃L, ẽR and χ̃0

2 masses. To

do so, we take mq̃L
,mẽR

and mχ̃0
2

to be randomly generated with a uniform distribution
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Figure 15: Reconstructing the spectrum with a clear di-lepton edge from events passing cuts

selection B and Mqll < Mmax

qll : the Mql edge. We expect an edge at 371GeV from the spectrum.

Standard Model background is shown in red.

Fitted value/GeV Shifted value/GeV

Mmax
ll 69.4± 0.15 69.4±0.15

Mmax
llq 450±5.5±2.4 467.6±6.0

Mmax
lq 353±1.7±3.6 370.8±4.0

Mmin
llq 188±7.5±6.6 202.8±10.0

Table 2: Fitted edges and their uncertainties.

Theoretical/GeV Estimated/GeV

ml̃R
− mχ̃0

1
37.5 28.1±1.4, 37.5±2.3

mχ̃0
2
− mχ̃0

1
69.7 69.7+0.7

−0.3

mq̃L
− mχ̃0

1
567 564±26

Table 3: Sparticle mass differences.

within 50% of their central values and compute mχ̃0
1

using the Mmax
ll di-lepton endpoint

which has a very small statistical error. This is equivalent to approximating the very

narrow Gaussian likelihood distribution of Mmax
ll with a δ function. We then compute the

χ2 for the remaining observables (Mmax
llq ,Mmin

llq ,Mmax
lq ) and assign a weight ∝ e−χ2/2 to

this set of randomly generated masses. Doing this many times provides a sampling of a

probability distribution for the sparticle masses. The marginalisations to three independent

mass differences is shown in figure 16.

From each probability distribution, we estimate the mass differences. The histograms
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Figure 16: Mass difference samplings for the reconstructed spectrum with 100 fb−1 of data: (a)

ml̃R
− mχ̃0

1

, (b) mχ̃0

2

− mχ̃0

1

, (c) mq̃L
− mχ̃0

1

.

show the binned estimated probability density function of each mass difference, whereas

the continuous lines show the best-fit Gaussian shape. In figure 16a, the plot has been

separated into two regions, each of which is fitted with a separate Gaussian. mχ̃0
2
− mχ̃0

1

has been fitted with two half-Gaussians of different widths, “glued” at the maximum.

mq̃L
−mχ̃0

1
is not very well fitted with a Gaussian, as figure 16c shows. We characterise the

distribution instead by its mean and standard deviation. The characteristic double-bump

structure of figure 16a displays the existence of two solutions in mass space for the edge

variables listed in table 2 and results in two different possible estimated values for the mass

difference, one at each local maximum. This ambiguity was also observed for the case of

an LHC SPS1a spectrum reconstruction in [67]. We display the estimated and theoretical

values for the three mass differences in table 3. In our case, the ’true’ peak correspond

to the ql-edge given by invariant mass of the quark and the far lepton in the decay chain,

whereas the ’wrong’ peak correspond to a solution for the ql-edge given by the quark and

the near lepton. We find the ‘wrong’ solution by numerical scans to be mq̃L
= 792.6 GeV,

mχ̃0
2

= 303.6 GeV, ml̃R
= 261.8 GeV and mχ̃0

1
= 233.7 GeV with a resulting χ2 of 0 (the

solution of the correct peak also has a zero value of χ2, by construction). The different

heights of the bumps in figure 16 must therefore be a consequence of volume effects in the
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marginalisation procedure, since the two best-fit solutions are equally likely. One requires

additional data in order to discriminate between the two solutions experimentally.

Despite the existence of two possible good-fit regions of mass difference space, we have

enough information to discriminate against mSUGRA models. As mentioned before, the

gaugino mass ratios in mSUGRA are M1 : M2 : M3 ≈ 1 : 2 : 6. We also know that in

mSUGRA, mq̃L
is strongly correlated with mg̃ and generically we have mq̃L

. mg̃ (this is

guaranteed within mSUGRA by the presence of light sleptons). Therefore, in mSUGRA

models we have mg̃ ≈ 6mχ̃0
1

and

(mg̃ − mχ̃0
1
)/(mχ̃0

2
− mχ̃0

1
) = 5,

(mg̃ − mχ̃0
1
)/(mχ̃0

2
− mχ̃0

1
) & (mq̃L

− mχ̃0
1
)/(mχ̃0

2
− mχ̃0

1
).

However, for the large volume models we obtain

(mq̃L
− mχ̃0

1
)/(mχ̃0

2
− mχ̃0

1
) = 8.09 ± 0.38 , (4.5)

from table 3. Thus the measurements made are not compatible with the mSUGRA scenario.

Further measurements, e.g. of the gluino mass and the right handed squark masses, would

provide further evidence for discrimination against mSUGRA. Using the expected mq̃L
: mg̃

ratios, we could also investigate the M2 : M3 ≈ 1 : 3 prediction of the large volume models.

For this it would be useful to directly measure the gluino mass: to this end the decay

channel g̃ → qq̃R → qqχ̃0
1 may be exploited as well as the MT2 variable [68].

5. Conclusions

We have performed a detailed study of the expected superparticle spectrum and collider

phenomenology for large-volume string models. Our main conclusions are:

1. The large volume models give rise to a distinctive spectrum of gaugino masses, char-

acterised by

M1 : M2 : M3 = (1.5 → 2) : 2 : 6 (5.1)

This can be distinguished from the ratios that appear in e.g. mirage mediation or

mSUGRA.

The collider phenomenology depends heavily on the mass difference between M1 and

M2 and the slepton mass spectrum. If this is large, leading to many χ̃0
2 → χ̃0

1l
±l∓

events, kinematical reconstruction of the spectrum is much easier. This was discussed

in section 4.

2. The overall spectrum tends to be more bunched than that of a corresponding

mSUGRA model. This can be understood by the approximate unification, prior

to the inclusion of the effects of magnetic fluxes on the brane world-volume, of scalar

and gaugino masses at the intermediate (fundamental) scale. There is then less room

for the physical masses to evolve from their theoretical boundary condition and the

overall spectrum falls within a narrower mass range.
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This effect also occurs in models of mirage mediation, where gaugino masses are

(accidentally) unified at the intermediate scale.

3. More concretely we find: the LSP is mostly bino. The second neutralino is mostly

wino and is almost degenerate with charginos. Sleptons are almost degenerate, with

stau the lightest. The gluino is the heaviest sparticle. The ratio of the gaugino-squark

masses is larger than that predicted by mSUGRA.

4. We have quantified the uncertainty that appears in the weak scale spectra due to

uncertainties in the high-energy soft terms. The incorporation of such uncertainties

is essential in trying to make predictions for LHC signatures based on high-scale

string constructions.

5. We have used event generators and detector simulators to study possible signatures of

our models. We analysed the use and limitations of certain ‘counting’ observables to

contrast our models with other classes of models, especially a line through mSUGRA

parameter space (the SPS1 slope) that has been well studied in the literature. We

found that some counting observables are more useful than others but in general

they do not provide enough information to fully distinguish the models, at least in

simple 2-dimensional projections. It may be true that a fit of the models to the full

parameter space of counting observables is required.

6. We studied in detail a sample model that is quite rich in χ̃0
2 → χ̃0

1l
±l∓ decays.

Accurate reconstruction of some properties of the low-energy sparticle spectrum is

possible with 100 fb−1 of integrated luminosity. Our sample study shows that the

large volume model can be differentiated from standard mSUGRA.

In this work we have made progress in the process of starting with a well defined class

of microscopic models and bringing them to the point where they may be confronted with

potential experimental measurements at the LHC. This is a positive step in the direction

of testing classes of models derived from string theory. This is clearly a less ambitious task

than testing string theory in its entirety, but one that may prove more fruitful. Moduli

stabilisation with supersymmetry breaking has allowed us to find explicit expressions for

soft breaking terms that have a well-defined microscopic origin, which is not the case for

the well studied standard benchmark points. Issues, such as flavour universality and extra

CP violation, that render the generic gravity mediation scenario unrealistic and have to

be resolved by hand in most models, can now be understood in terms of the particular

properties of string compactifications. Furthermore we have found ways to distinguish our

models from mSUGRA and other models, using properties that may be directly measured

within a few years of LHC running.

There are however several open questions we need to emphasise. First of all we have

been working on a scenario allowed by type II constructions, in which the Standard Model

is assumed to live on a set of D-branes localised at a particular region inside the Calabi-

Yau manifold. The problems of moduli stabilisation and supersymmetry breaking are thus

decoupled from the details of the Standard Model construction. This approach has the
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positive feature that moduli are stabilised in a large class of models. Other issues, such as

the number of families, proton stability and gauge unification are more model dependent.

In this sense our results are very robust. On the other hand they lack concreteness in the

sense that we do not have an explicit D-brane configuration with the MSSM spectrum,

known Yukawa couplings, etc. Finding a fully realistic model in this approach is therefore

an open question.

Nevertheless we have identified the main sources of uncertainty in our analysis that

parametrise our ignorance of such a realistic model. First, we included the effects of

magnetic fluxes, usually needed to construct chiral models on D7 branes. Even though the

dependence of Kähler potentials and gauge couplings on the magnetic fluxes is not known,

we were able to parametrise our ignorance in terms of the random parameters ǫa. A second

source of uncertainty is the spectrum itself. We know that typical quasi-realistic D-brane

models (see [69] for a recent review) usually have extra particles beyond the MSSM and

that the hypercharge does not have a canonical normalisation. We took into account these

effects by varying the hypercharge normalisation and finding observables, such as the ratios

of gaugino masses, which do not change if there are extra fields beyond the MSSM. Finally,

we have assumed the simplest configuration of D7 branes hosting the Standard Model in

the sense that they are all assumed to wrap the same 4-cycle. Different configurations

would slightly change the expressions for the soft breaking terms. The expressions would

then depend on an extra parameter λ that takes different values depending upon which

cycles the branes wrap and the manner of their intersection. For the case studied here,

λ = 1/3 [13, 12]. It would be interesting to explore the implications of other configurations

leading to different values of λ.

The model independence of our analysis makes it easy to adapt once explicit realistic

models are constructed that may differ from the MSSM. Furthermore, potential experi-

mental measurements at the LHC may provide guidance on what the structure of these

realistic models should be. Even if at the end it turns out that our models will not pass

experimental scrutiny from the LHC, the detailed analysis made, all the way from string

theory to LHC observables, should be a useful guide for future proposals. It is encouraging

to have this rich interplay between theory and experiment waiting for the arrival of LHC

results.
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A. PGS level 2 triggers

Here we list the PGS Level 2 Triggers used in our event analysis for ease of reference, which

can be obtained from pgs olympics.f in the PGS package [9]. If any of the following apply

to an event, the trigger is passed and the event recorded. The PGS definition of isolation

is somewhat involved, and we refer the interested reader to the PGS manual for further

details. Our isolation criteria for muons are based on those used in the Chameleon [70]

package: the ratio of the energy in a 3x3 grid surrounding the muon and the pT of the

muon is required to be < 0.1125, and the total pT of a ∆R = 0.4 cone region surrounding

(but excluding) the muon is required to be < 5GeV.

1. Inclusive isolated lepton l ≡ e, µ pT (l) > 180 GeV;

2. For a lepton pT (l) > 130 GeV plus a jet j pT (j) > 200 GeV;

3. Isolated same-flavour di-leptons pT (l1,2) > 60 GeV;

4. Di-leptons pT (l1,2) > 45 GeV plus jet pT (j) > 150 GeV;

5. Isolated opposite-flavour di-leptons pT (l1,2) > 30 GeV;

6. Isolated lepton pT (l) > 45 GeV plus isolated tau pT (τ) > 60 GeV;

7. Isolated di-tau pT (τ1,2) > 60 GeV;

8. Inclusive isolated photon pT (γ) > 80 GeV;

9. Isolated di-photon pT (γ1,2) > 40 GeV;

10. Inclusive 6pT > 200 GeV;

11. Inclusive single-jet pT > 1000 GeV;

12. Jet pT (j) > 300 GeV plus 6pT > 125 GeV;

13. Acoplanar jet pT (j) > 150 GeV and 6pT > 80 GeV, 1 < ∆φj 6pT
< 2;

14. Acoplanar dijets pT (j1,2) > 400 GeV, ∆φjj < 2.
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